k^2=81/64

Simple and best practice solution for k^2=81/64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2=81/64 equation:



k^2=81/64
We move all terms to the left:
k^2-(81/64)=0
We add all the numbers together, and all the variables
k^2-(+81/64)=0
We get rid of parentheses
k^2-81/64=0
We multiply all the terms by the denominator
k^2*64-81=0
Wy multiply elements
64k^2-81=0
a = 64; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·64·(-81)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{20736}=144$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-144}{2*64}=\frac{-144}{128} =-1+1/8 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+144}{2*64}=\frac{144}{128} =1+1/8 $

See similar equations:

| x+59=121 | | 9t-16t=49 | | 9-4×(4x+8)=-5x-6 | | 9x-75=60 | | -2f-17+4f=-9 | | 8x-70=-6 | | 11x-40=-7 | | 9x+5+16x+50=180 | | 246=6(7x-8) | | 11x—40=-7 | | 90+x+64+x+34=180 | | 101=-16t^2+80t+5 | | 1/9x=-11 | | 10x-165=111-2x | | 1/3n+4-1=n-1 | | 21=-14x-28 | | 2/9i+4/27=2/5 | | 21x=-14x-28 | | 4(2x+15)^(3/5)=1372 | | X^2+6x+x+14=12x-2 | | 15(0.5)^x=60 | | X-80=65+6x | | 4/x+3=2/8x-1 | | 3x5=17 | | a-2.75=4.03 | | 14+5x=34 | | 2y+9=-7 | | 94=-3(5a-8)-5 | | 5a-12=2 | | -12d+15=15-11d | | 1.4+y/3=-6.1 | | 9x+210=4x+240 |

Equations solver categories